Updating with incomplete observations
نویسندگان
چکیده
Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating probabilities when observations are incomplete (or setvalued). This is a fundamental problem, and of articular interest for Bayesian networks. Recently, Griinwald and Halpern have shown that commonly used updating strategies fail here, except under very special assumptions. We propose a new rule for updating probabilities with incomplete observations. Our approach is deliberately conservative: we make no or weak assumptions about the so-called incompleteness mechanism that produces incomplete observations. We model our ignorance about this mechanism by a vacuous lower prevision, a tool from the theory of imprecise probabilities, and we derive a new updating rule using coherence arguments. In general, our rule produces lower posterior probabilities, as well as partially determinate decisions. This is a logical consequence of the ignorance about the incompleteness mechanism. We show how the new rule can properly address the apparent paradox in the 'Monty Hall' puzzle. In addition, we apply it to the classification of new evidence in Bayesian networks constructed using expert knowledge. We provide an exact algorithm for this task with linear-time complexity, also for multiply connected nets.
منابع مشابه
FEM Updating for Offshore Jacket Structures Using Measured Incomplete Modal Data
Marine industry requires continued development of new technologies in order to produce oil. An essential requirement in design is to be able to compare experimental data from prototype structures with predicted information from a corresponding analytical finite element model. In this study, structural model updating may be defined as the fit of an existing analytical model in the light of measu...
متن کاملUpdating beliefs with incomplete observations
Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating probabilities when observations are incomplete (or set-valued). This is a fundamental problem in general, and of particular interest for Bayesian networks. Recently, Grünwald and Halpern have shown that commonly used updating strategies fail in this case, except under very special assumptions. In this pap...
متن کاملModeling Unreliable Observations in Bayesian Networks by Credal Networks
Bayesian networks are probabilistic graphical models widely employed in AI for the implementation of knowledge-based systems. Standard inference algorithms can update the beliefs about a variable of interest in the network after the observation of some other variables. This is usually achieved under the assumption that the observations could reveal the actual states of the variables in a fully ...
متن کاملDAMAGE IDENTIFICATION OF TRUSSES BY FINITE ELEMENT MODEL UPDATING USING AN ENHANCED LEVENBERG-MARQUARDT ALGORITHM
This paper presents an efficient method for updating the structural finite element model. Model updating is performed through minimizing the difference of recorded acceleration of real damaged structure and hypothetical damaged structure, by updating physical parameters in each phase using iterative process of Levenberg-Marquardt algorithm. This algorithm is based on sensitivity analysis and pr...
متن کاملNonlinear lap joint interface modeling and updating strategies for assembled structures
A comparison between two known strategies of modeling lap joint interfaces, namely, zero-thickness and thin layer interface theories and their associated updating procedures, is made. Finite element...
متن کامل